
Journal of Statistical Physics, Vol. 84, Nos. 1/2. 1996 

Interaction-Round-a-Face Models with Fixed 
Boundary Conditions: The ABF Fusion Hierarchy 

Roger E. Behrend, l Paul A. Pearce, l and David L. O'Brien ~ 

Received August l. 1995; final November 28. 1995 

We use boundary weights and reflection equations to obtain families of com- 
muting double-row transfer matrices for interaction-round-a-face models with 
fixed boundary conditions. In particular, we consider the fusion hierarchy of the 
Andrews-Baxter-Forrester (ABF) models, for which we obtain diagonal, elliptic 
solutions to the reflection equations, and find that the double-row transfer 
matrices satisfy functional equations with the same form as in the case of 
periodic boundary conditions. 
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1. I N T R O D U C T I O N  

Two-dimensional lattice spin models in statistical mechanics have tradi- 
tionally been solved by imposing periodic boundary conditions on the rows 
of the lattice. The Yang-Baxter  equation, together with such boundary 
conditions, then leads to families of commuting row transfer matrices and 
hence solvability. Ill However, it has been shown that by using boundary 
weights and reflection equations, it is also possible to construct commuting 
double-row transfer matrices for vertex models with open boundary condi- 
tions. 12) 

Although the bulk properties of physical interest are independent of 
the boundary conditions in the thermodynamic limit, there are many sur- 
face quantities, such as the boundary free energy, which are also important.  
Moreover, at criticality, the eonformal spectra of lattice models do depend 
on the boundary conditions. ~3) For  these reasons it is of interest to study 
lattice models with nonperiodic boundary conditions. 
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2 Behrend et  al. 

In this paper, we begin in Section 2 with a brief outline of a procedure 
for obtaining commuting double-row transfer matrices for vertex models with 
open boundary conditions, based on that of ref. 2 and its generalizations. ~4-71 

In Section 3, we present a scheme for applying fixed boundary condi- 
tions to interaction-round-a-face (IRF) models, motivated by the preceding 
scheme for vertex models and by various correspondences between IRF 
and vertex models. 18-1t~ We note that recently, reflection equations for IRF 
models similar to those obtained here were obtained independently in 
ref. 12. 

In Section 4, we specialize to an important example of IRF models, 
the Andrew-Baxter-Forrester  (ABF) models, 1~3~ and present diagonal, 
elliptic solutions to their reflection equations. 

In Section 5, we extend our general formalism to accommodate IRF 
models which have a fusion hierarchy. Our approach to fusion is similar to 
that of ref. 14, in which level 2 fusion of vertex models with open boundary 
conditions was considered. 

In Section 6, we return to the ABF models and consider their fusion 
hierarchy. ~'5-~8~ We find that the double-row transfer matrices satisfy 
various symmetry properties as well as functional equations and a 
generalized inversion identity with the same structure as in the case of 
periodic boundary conditions, t ~9. 2o~ 

In Section 7, we discuss future work, including that in which we plan 
to use the double-row transfer matrix functional equations to derive the 
boundary free energy and conformal spectra of the ABF models with fixed 
boundaries. 

We conclude with three appendices in which we prove some of the 
results used in the main text. 

2. V E R T E X  M O D E L S  W I T H  OPEN B O U N D A R Y  C O N D I T I O N S  

We now schematically outline the formalism for vertex models on 
which our treatment of IRF models is based. We note that the main dif- 
ferences between our formalism and that originally presented in ref. 2 are 
that here only the first inversion relation is assumed, no R-matrix sym- 
metries are assumed, and the top row of the transfer matrix has the form 
T ( p -  u) '~ rather than T ( - u ) - J ,  where T(u) is the form of the bottom row, 
p is arbitrary, and to is transposition on the auxiliary space. 

We are considering a vertex model with Boltzmann vertex weights 

ut 
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and left and right boundary weights 

and 

where u is a spectral parameter. Using these weights, we define a double- 
row transfer matrix as 

D(u)  = i (2.1) 
t t  i 

where p is an arbitrary fixed parameter. If we now assume that the vertex 
and boundary weights satisfy the Yang-Baxter equation 

(2.2) 

the inversion relation 

= p ( u ) p ( - - u )  (2.3) 

the left reflection equation 

i 
u l l ' - I e ' u  

i 

: u  u - v  

(2.4) 
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and the right reflection equation 
,, ,, 

I I ,, 

i ~ - ~ - u  u ', 

(2.5) 

where p is a model-dependent function, then it can be shown that the 
double-row transfer matrices form a commuting family, 

D(u) D(v )=  D(v) D(/4) (2.6) 

We also note that if we regard the spectral parameter u as an effective angle 
7~/4/tt, then the geometric angles in the Yang-Baxter and reflection 
equations are equal to the effective angles given by the corresponding 
values of the spectral parameter. 

3. IRF MODELS WITH FIXED BOUNDARY CONDITIONS 

3.1. Boltzmann Weights and Transfer Matrices 

We now present our formalism for interaction-round-a-face (IRF) 
models. This was obtained from the preceding formalism for vertex models, 
together with the boundary crossing equations presented in ref. 7, using 
various vertex-face correspondences. ~8 it 

We are considering an IRF model with Boltzmann face weights 

d 

a b /4 ~ ~ a c 

a b 
b 

Here, the spins a, b, c, d take values from a discrete set and the spectral 
parameter u is a complex variable. 

In order to accommodate fixed boundary conditions, we introduce left 
and right boundary weights, each of which depends on three spins, 

c c 

B L b /4 = b and B R b /4 = b 
a a 

a a 

We assume that the IRF model is associated with an adjacency condition, 
as specified by a symmetric adjacency matrix A each of whose entries 
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is 0 or l, and that the face and boundary weights satisfy the adjacency con- 
dition as follows: 

A,bAb,.A,.dAd,=O implies W( d c[ ) a b  u=O 

A,,bAb,.--O implies BE( 2 b]u)=BR(b ~ilu) 

(3.l) 

=0 (3.2) 

We now consider a lattice of width N and use these weights to construct 
a double-row transfer matrix. If a, ..... aN+, and b, ..... bu+ , are two rows of 
spins and p is an arbitrary fixed parameter, then the corresponding entry 
of the double-row transfer matrix is defined by 

(a, ..... aN+, I D(Lt) Ibl ..... bN+, )  

= Cl ~t--U W ~/ cj+l u W by bi+' F t - u  
,', .... "u+l a, , kay aj+ 1 c/ c j + ,  

•  CN+' aN +bN+'[ u ) ,  

b I b| b2 b3 bN bN+l 

(3 3) = 'el :2 c3 CN CN+l 

u u u 

al al a2 a3 aN aN+l aN+l 

In this and all subsequent diagrams, we use solid circles to indicate spins 
which arc summed over and dotted lines to connect identical spins. 

3.2. Local Relations 

The face weights and boundary weights are assumed to satisfy the 
following local relations: the Yang-Baxter equation 

g b c 

�9 e f f e f . . . .  

b b c b c c 
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d d 

a ~ o  =p(u) p( -u )  ,~,,cA,,hA,,,i 

b b 

the left reflection equation 

a 

=Yw(~ 

(3.5) 

(3.6) 

icb :IY 
the right reflection equation 

(3.7) 

a 

c . . . . . . .  
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the left boundary crossing equation 

c . . . . . . . .  c c 

a a 

and the right boundary crossing equation 

c . . . . .  c c 

a a 

These equations are to be satisfied for all values of the external spins and 
all values of the spectral parameters. The function p is model dependent 
and ll is the same parameter as in (3.1). 

We note that the local relations (3.4)-(3.9) are consistent with the 
initial condition 

C 

More specifLcally, with this initial condition we see that (3.4) holds for 
u = v  or v=0,  that (3.5) holds for u=0 ,  that (3.6) and (3.7) hold for u=v,  
and that (3.8) and (3.9) hold for u=/~/2. Furthermore, we find that (3.4) 
holds for u=0,  due to (3.5), while (3.6) and (3.7) hold for v = g l - u ,  due 
to (3.8) and (3.9). Indeed, the inversion relation can be motivated by the 
Yang-Baxter equation together with the initial condition, while the bound- 
ary crossing equations can be motivated by the reflection equations 
together with the initial condition and the inversion relation. 
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3.3. Crossing Symmetry of Double-Row Transfer Matrices 

The double-row transfer matrices satisfy crossing symmetry, 

D(u) = D ( / t  - u )  (3.11 ) 

We prove this by considering an entry of D(u), applying the inversion rela- 
tion at an arbitrary point, then using the Yang-Baxter equation N times, 
and finally applying both boundary crossing equations: 

/~-u /z-u 
D(u) = 

t~ u 

/~-u 

-~7(u) 
~ u . . . . . . . . . .  u 

~l( u ) 

/z--u p--u 

= D(lt - u) 

where ii(u ) = p ( I t  - 2u) p(2u - / t  ). 

3.4. Commutation of Double-Row Transfer Matrices 

The double-row transfer matrices form a commuting family, 

D(u) D ( v ) =  D(v) D(u) (3.12) 

We prove this by the following steps, in each of which we use either the 
inversion relation, the Yang-Baxter equation N times, or the reflection 
equations: 
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D(u) D(v) 

U 

U 

Ig--v 

~j 

p - - u  

o 

1 
q(u, v) 

q(u, v) 

I 

O(u, v) 

1 

O(u, v) 

1 

O(u, v) 

u v ~ u 

IJ- -u  : la- -u  ~ u  

u u U 

~ - - u  

u + v - #  

o 

u 

,u--v  

~ - - u  

u + u .  

u 

u 

,u- -u  

u 

u 

,U--U 
-- lg 

p - -U 

11 

0 

U 1 
u 

~--v 

p--u 

v ~ . . . . . . . . . . . . .  

u 

,u--v ,u~u 

p--u ~t~u 

I) O 

U tl 

#--u--u 

~--u 

u 

u 

p--v 

p - - u  

u 

u 
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1 

O(u, v) 

1 

q(u,  v) 

~ p--u /~--tt ,u--u /t--u 

/ z - - v  /z--v #--v #--v 

u u u u 

u v u v 

. . . .  i l l  . . . . . . .  
p--u /~--u 

/ ~ - - u - - v  

u u 

o v 

#- -u - -u  

1 

q(u, v) 

I la--u 
p--u 

B 

11 

/l--u 
u ~ . . . . . . . . . . . . .  

,u--o 

u 

/*--u /~--u 

u u 

u u 

I p--it 

B 

= 
p--v 

o 

= D(v) D(u) 

where 

/l--u 

u 

IJ--u 

tl 

Jl(u, v) = p ( u  + v - l t )  p ( l l  --  u - v) 

O(u, v) = p ( v -  u) p ( u  --  v) p ( u  + v - I L )  p(/~ --  u - v) 

4. ABF  M O D E L S  

We now consider the particular case of Andrews-Baxter-Forrester 
(ABF) models. ~3~ There is one such model for each integer L~>3. The 
spins a--sometimes known also as heights--in this model take the values 

a e { 1 , 2  ..... L} (4.1) 

and adjacent spins must differ by 1, 

A, ,h=r~, , ,b -I  + ~,,.b+ x (4.2) 
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There is a fixed crossing parameter 

/r 
2 =  

L + I  

and the nonzero face weights are given by 

(aa+_l a ) O(2--u) 
w  -T-1 - 

W (  aaT1 a_+l [  ) a  u = ( 0 ( ( a - 1 ) 2 ) 0 ( ( a + l ) 2 ) )  1 / 2 0 ( u ) - ~ a - 2 - - ~  0(2) 

a a+_ 1 ) O(a2-Z-u) 
U - -  W a+_ 1 a O(a2) 

Here 0 is the standard elliptic theta-I function of fixed nome q, 

O(u) = 01(u, q) = 2q T M  sin u f i  ( 1 - 2q 2" cos 2u + q4,,)( 1 - qZ,,) 

which satisfies the identity 

O(s + x) O(s- x) O(t + y) O(t-  y) 

- O(s +y )  O(s - y )  O(t +x)  O(t - x )  

= O(s + t) O(s - t) O(x +y) O(x - y )  

(4.3) 

(4.4) 

(4.5) 

C 

W u = W u (4.8) 
a b b 

crossing symmetry 

(4.9) 

and 

It can be seen that the ABF face weights satisfy various simple relations: 
reflection symmetries 

(4.6) 
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full height reversal symmetry 

and the initial condition 

Behrend et  al. 

) L + l - a  L + l - b  u (4.10) 

W (  d ;[O):6,,,A,,bA,,d (4.1I) 

It is well known that, essentially due to (4.6), the face weights also satisfy 
the Yang-Baxter equation (3.4) and inversion relation (3.5), with the func- 
tion p given by 

O(u-2) 
p(u) (4.12) 

0(2) 

We now define, as the only nonzero ABF boundary weights, 

a "~ [O((a-T- 1)2)"X 112 

=~<, <,-v-1 ")=t al7,;:7 ) 

M R (a  --T- 

O(u + (2 --It)~2 ~ ~L(a)) 0(U -'l- a2 + (2 --/2 )/2 4- ~L(a)) • 

1 a] "~ fO((a~ 1)2)'~ '/2 
a i u) =t, ~;:7 ) 

0(2) 2 

(4.13) 

O(u + (2 - l t  )/2 -T- ~R(a) ) O(U +_ a2 + (2 --lt)/2 +_ (R(a)) 
0(~.) 2 

where ~L(a) and ~R(a) are arbitrary parameters independent of u. In 
Appendix A, we show that the reflection equations (3.6) and (3.7) are 
satisfied by the ABF face and boundary weights. We also show that the 
ABF weights, together with p given by (4.12), satisfy the boundary crossing 
equations (3.8) and (3.9). 

If ~L and ~R satisfy 

~L(L q- 1 - - a ) =  --~L(a), ~R(L+ 1 - - a ) =  --~R(a) (4.14) 
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then the ABF boundary weights satisfy full height reversal symmetry 

B R (b c 
a 

The boundary weights 

a :~c  

b u ) = - - B L (  L + l - c + l  a 

u ) = - B R ( L + I - b  

4.13) have the diagonal form 

implies BL(~  b]u)=BR(b  

L + l - b [ u )  

L + I - c ]  ) u 
L + l - a  

(4.15) 

; I.)_-0 /416, 
This form leads to identical boundary spins at each end of the entire lattice. 
It is therefore convenient to regard these spins as labels for the boundaries 
and only the internal spins as matrix indices, and accordingly we define the 
ABF double-row transfer matrix with fixed left and right boundary spins aL 
and a R by 

(a_, ..... aNI U(aLag ] U) [b 2 ..... bN) 

= (aL, a2 ..... aN, aRI D(u) laL, b2 ..... bN, aR) (4.17) 

It is natural in these models to take it as 

It = 2 (4.18) 

With this choice, crossing symmetry of the face weights, (4.9), implies that 
D(aLaRlU) is symmetric 

D(aL aR l u)=D(aL aR l U)' (4.19) 

Of particular interest is the isotropic point, t! = 2//2, at which we now show 
it is possible to achieve a completely homogeneous lattice, with pure, fixed 
boundary conditions. If we set ~L(aL)= +2/2, ~R(aR)= +2//2, and It =2,  
then 

BE( aL 2/2) = B R aR aL -T- 1 I ( a R ~ l  r2 /2)  = 0  
\aL aR 

so that the transfer matrix D(aLaR]2/2) is simply proportional to the 
matrix product of two rows of face weights, all with spectral parameter 2/2, 
with the three spins on the left boundary fixed to ae, aL+ 1, a L and the 
three spins on the right boundary fixed to aR, a R q-- 1, a R. Similarly, if we 
set ~L(aL)= +2/2 and ~R(CIR)~" -T-2/2, then D(aLaR]2/2) has the spins on 
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the left boundary fixed to aL, a L -1- 1, a L and the spins on the right bound- 
ary fixed to aR, a a ~ 1, a R. 

5. FUSED IRF MODELS WITH FIXED BOUNDARY 
CONDITIONS 

We now extend our general formalism to cover models which have a 
fusion hierarchy. For  these models there is a discrete set of fusion levels, 
and we assume that each of these is labeled by a single integer, with the 
original, unfused model corresponding to fusion level 1. 

The fused face weights W pq are associated with two fusion levels--a 
horizontal level p and a vertical level q - - and  the fused boundary weights 
B / and B~ are associated with one fusion level q. There is now an 
adjacency matrix A q for each fusion level q, with the adjacency conditions 
on the fused weights being 

A P A q A  pAq - 0  implies wPq(  d c] ) ab be cd'" a,, -- b u = 0 (5.1) 

=0  (5.2) 

The fused double-row transfer matrices are also associated with two fusion 
levels, and are defined by 

< a l  ..... aN+ I I DPq(u) Ib, ..... bN + 1> 

= c~ - - u - - ( q - -  1)2+/1 
cl  . . .  c~v+ I a l  

[jO ( ) (  I x Wp q cj 6)+, u W pq bj bj+l - -u - - (q- -  
! aj aj+ 1 cj c j +  I 

( bN+t  ) xB~ CN+I U 
aN+ 1 

(5.3) 

where 2 and p are arbitrary fixed parameters. In this generalized 
framework, the fused Yang-Baxter  equation is 

g b u - v  c u W "  d v 

W p'(ab g V) W pq(f e ) (eg d ) = U ~V rq u -- v 
c g c g 

(5.4) 
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the fused inversion relation is 

e 

the fused left reflection equa t ion  is 

prq(u --  V) p"q( - - U - -  v - - ( q - -  1)2 + p )  

u - - v + ( q - - r ) 2  W q" 
fg f a g 

15 

C ~ = pq"(U) p " q ( - - U )  C~,u.A,bAad ( 5 . 5 )  b - u / i  q r 

c - u - v - ( r - 1 ) 2 + p )  
f 

= pqr(u --  12 q" (q -- r)2) pqr( - - U  - -  V - -  ( r - -  1 )2 +I t) 

fg g b - u - v - ( q - 1 ) ) . + p  

the fused right reflection equation is 

p q " ( U -  0 + (q - - r ) 2 )  pqr( - - U - -  V - - ( r  --  1)2 + p )  

.fg a 

= prq(u --  U) prq( - - U  - -  • - -  (q-- 1 )2 +p) 

fg c b 

x B  q u B R b v (5.7) 
g a 



16 Behrend e t  al. 

the fused left boundary crossing equation is 

=(--1)qPqq(--2u--(q-1)2+P)B[(  ca b - u - ( q - l ) 2 + p ) ( 5 . 8 )  

and the fused right boundary crossing equation is 

~ w q q ( ;  d 2u+(q-1) )~-12)Bq(d  c u) 
d a 

=(- l )qpqq(-2u  ( q - 1 ) 2 + p ) B q ( b  c ) - - u - ( q - 1 ) 2 + I t  (5.9) 
a 

where p"q a r e  model-dependent functions. The fused local relations are 
consistent with the fused initial condition 

W qq 0 = ( -- 1)'1 pqq(O) "~ Aq Aq v,,.,~,,b,,,, a (5.10) 
a b 

It can be seen that the fused adjacency conditions, double-row transfer 
matrix, local relations, and initial condition reduce to (3.1)-(3.10) for 
p = q = r = l .  

By following a parallel sequence of steps to those of Section 3.3, but 
now including the fusion levels p and q, it can be shown that the fused 
inversion relation and boundary crossing equations (5.5), (5.8), and (5.9) 
imply that the fused double-row transfer matrices satisfy crossing symmetry 

Din(u) = DPq( - u  - ( q -  1 )2 +/t) (5.11) 

Similarly, by following a parallel sequence of steps to those of Section 3.4, 
it can be shown that the fused Yang-Baxter equation, inversion relation, 
and reflection equations (5.4)-(5.7) imply that the fused double-row trans- 
fer matrices form a commuting family 

DPq(u) DP"(v)= Dm(v) DPq(u) (5.12) 

6. ABF FUSION HIERARCHY 

6.1. Adjacency Conditions 

We now return to the case of  ABF models  and consider their fusion 
hierarchyJ 15-18) For each L, we have L + 2 fusion levels, labeled - 1 ,  0,..., L. 
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q - -  The level-q adjacency matrix A q is defined by the condition that A , b -  1 if 
and only if 

a- -bE{ - -q ,  - - q + 2  ..... q--2, q} (6.1) 

and 

a + b ~  {q+2,  q + 4  ..... 2 L - q - 2 ,  2L--q}  (6.2) 

It can be seen that 

A - j = 0 ,  A ~  A I=A,  A L - z = A Y ,  A L - 1 = Y ,  A t = O  (6.3) 

where I is the L x L identity matrix, A is given by (4.2), and Y is the L x L 
height reversal matrix 

Y,,b = 6z_ + t -,.b (6.4) 

It can be shown that the fused adjacency matrices satisfy full height 
reversal symmetry 

A q =  Y A q Y  (6.5) 

partial height reversal symmetry 

A q =  Y A  L - l - q  (6.6) 

and the fusion rules 

and 

where 

A q A  = A q -  I ..t.. A q +  l 

( A q ) z  = I-.I- A q -  I A q+ l 

(Aq)-' = (I + .4q- J)(l + .~q + 1) 

(6.7) 

(6.8) 

(6.9) 

.~q= A q - l A  q+ l (6.10) 

For what follo~vs, it is useful to define a set Pqb of (q--1)-point paths 
between a and b as 

,,o ){(c ,  ..... Cq_l)e{1,...,L} q-I IA,,.tA,.,c,....A,.,_cq_,A,._,o=I}, (6"11) 

822/84/I-2-2 
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6.2. Face and Boundary Weights 

We now define ABF fused face weights W pq and fused boundary 
weights B q and B q. These definitions will involve the fusion normalization 
function 

Oq(u ) = I~J=~ O(u + k2 - j 2 )  (6.12) 
0(2)'1 

and the fusion gauge factors 

X q b  = ] -~(a+b+qJ/2  
Jt x j = [ u + b - - q ) / 2  

0( i~  ]'-[{.-b+q}12 0r ])~ l-l(b-a+q)12 O(j}~) 
' ~ J ' * J  i 1 / ~ 2  t d  ,' .t .t./=2 

0 ( 2 ) 2 q - -  1 

Ate = 0 

q - -  A.b-- l 

(6.13) 

and 

0(2),1+1 

,, o~-  ~ Hjl=o o(c9~) (6.14) 

where, as before, 2 is given by (4.3) and 0 is given by (4.5). Throughout 
this section, a product 1-IS= / P(j) is taken to be 1 for j"  < j ' .  

For weights involving fusion level - 1 ,  we define 

(6.15) 

For weights involving fusion level O, we define 

WP'~ b 

w~ b 

 o(c 

' = O P  I ( U )  ~ad~&.A Pb 

u) = ~,,b,~ ,.aAqa (6.16) 
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For  fusion level 1, the nonzero  ABF weights are defined as 

W]l(a+l a [ ) 0 ( 2 - - u )  
a T- 1 u 0(2) 

Wl,( a a+l = O((a+_l)2)O(u) 
a T- 1 a 0(a2) 0(2) 

w,,( ~ a+_, u) 
a _ 1 a 0(a2) 

_ O((a -T- 1 )2) O(u + (2 - / t ) / 2  "~ ~L(a)) 0(U +__ a2 + (2 - - p ) / 2  + ~L(a)) 
= + 0(,,t)3 

BIR( aT-laa U) 

_ O(u + (2 - -p) /2  -T- ~R(a)) O(U "b a2 + (2 --It)~2 + ~R(a)) = +  
O( a~ 3 o( ,t ) 

where, as before, ~L(a) and ~R(a) are arbi t ra ry  constants.  These weights are 
related to the s tandard  ABF weights (4.4) and (4.13) by the gauge transfor-  
mat ion  

( )  B I  c b u = e a + l e  b B L b u 
a 0(2) a 

U =~a+l~b  I/2BR b u 
a (0(a2) 0(b2)) a 

(6.18) 

where e,, are factors whose required propert ies  are 2 

(e,,) 2 = 1, e~,e,,+2 = - 1 (6.19) 

The Yang-Baxte r ,  inversion, reflection, and bounda ry  crossing equat ions  
(3.4)-(3.9) are still satisfied by these level-1 weights since the gauge factors 

-' For example, one of the (four possible) choices for e is 

I, a = 0 o r l ( m o d 4 )  
- l ,  a = 2  or 3 (mod4) 
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corresponding to the internal spins of these equations cancel, while the 
gauge factors corresponding to the external spins are the same on both 
sides of each equation. However, the face weights no longer satisfy the 
reflection symmetry (4.8). We note that the face and boundary weights 
which appear in all subsequent diagrams are the level-1 ABF weights of 
(6.17). 

We now proceed to ABF weights involving higher fusion levels, which 
are defined in terms of sums of products of the level-1 weights of (6.17) as 
follows: 

d 

(.c) 
W p q  12 h i  

a b i 

A r  ~ q  a b  ~ a d  

o;(.) Z Z .t l j = O  t, I . . . l , p _  I h I , . , h q _  I hq...2 

hq_,_ 

9p-I 92 91 

u+ u+ u+ 
(~-p)~ (q-2)A (q--U'\ 

u-- 

(p-2):~ 

(p-1),~ 
el 

u u+,\  

u--A u 

ep-2 ep-i  

(6.20) 

where ( f  , ..... f , t _  t ) ~ P~,. and (g, ..... g p -  , ) ~ P ~:a, 

(2 

a c2 

c3 q I , . . . .Cq-  I , b  

a 

cq..-l 

a (6.21) 
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where (d ,  ..... d q _  i) E e~llb , and 

. rI;':_o Z - Cl . . .  C q - I  

Gq, d~ ...... 1._~,b 

(2 

a 

)~ 

2 u...,3 ,X4~ 

\ 

c2 

where (d~ ..... dq_ l )EP,q ,b .  It is shown in ref. 17 that w P q (  d '" (6.22) ,, o lu)  is inde- 
pendent of the choice of (f~ ..... J q _ ~ ) e P q , .  and (g~...-, g p - ~ ) e P P ,  i, and it 
can be shown similarly that B q[" n q .  ,, L , ,  b l u) and /~R(b ,, I u) are each independent 
of the choice of (dl  ..... d q _  t) e P~b" 

It can also be shown that pq d c W (,, b] u) satisfies (5.1) even though the 
adjacency condition is only explicitly applied on the edges being summed. 
This can be regarded as a push-through property of the entries of the 
adjacency matrix, 

A" Aq A" A'~ ~ Z a b  b c  c d  d a  

e l  . , .  e p _  I h i  . . .  h q _  I 

- -  Z A a b , , d a  

el  . . .  e p _  1 h i  , . .  h q _  I 

d 9g-i 

u-i- 
(q-p).~ 

hi 

hq-; 
le.- 

(p-1)~ 

a el 

d 9p-i 

u-I- 
(q-v):~ 

h i  

hq-: 
u -  

(p-l),\ 

gl  r 

~+ 
(q-l  ):~ 

f |  

u 

eP-I b 

g~ c 

uq- 
(r 

.g-, 
(6 .23)  

11 
u 

a el ~p-l b 
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Furthermore, it can be shown that the configuration of level-1 weights in 
pq d c  W (,, b]  u) can be reoriented as follows: 

\ y = o  / b 

el . . .  ep_ I h I . . .  h q _  I 

d 9~-, g, 

u+ ~uq- 
(q-p)A (q-z)A 

h i  

hq--l, 
k.- 

(~-~),x 

a e! 

U 

ep--I 

fq-i  

I1 

(6.24) 

1 hi 

- -  ' ' a b ' ' b C e l . . . e p - I  fl ...fq-I Gd, h,,....hq-I, a hq.-~ 

gl?-I 

u -  
(p-1)A 

u-I- 

91 

G'~ /, ... rq-,.,. 

Yl 
u4- ( q--z ) .x 

"~' b (6.25) 

= y. Z 
g l . . . g p - I  h l . . . hq - I  h~..z: 

GP, g,,...,gp_t.d 

d 
u+ ~- 

(q-1)A (q-'p) A 

hi:  fct-I 

Il 

a �9 l e ~ !  

1 

G ,,P.el ,...,ep_ I .b 

(6.26) 
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hi 
1 

: z t q z t P  2 ~ q 
"'bc' '  Cdfl...fq-I gl .,.gp-I a d, hl,...,hq-t, a hq''l 

G ,.P. g , .... gp_ , .d 

(r,--O A 
fq-1 

Gq.f, .....z,_,.c 
f, 

u-t- u~- 
(q-l)~ (q-p)~ 

a ~' ~"-~ b (6.27) 
1 

G p a, el ,...,ep_ I ,b 

In these expressions, the external edge spins which are not summed are 
arbitrary, as long as we have (el,..., ep_l)EPPb in (6.26) and (6.27), 
( f i  .... fq_~)eP'[,,, in (6.24) and (6.26), (g~.. . ,gp_~)EP,.~ in (6.24) and 
(6.25), and (hi . . . . .  h q_ i)~ P~,, in (6.25) and (6.27). One way to prove (6.23) 
and (6.25)-(6.27) is to use the fusion projection operators of ref.-18, which 
satisfy a push-through property relative to the fused face weights and 
whose entries are proportional to the gauge factors G. 

In ref. 17 it is shown that for the ABF fused face weights, the summa- 
tion over multiple spins in (6.20) can always be reduced either to a single 
term or to a summation over a single index, and that T-rq-2 Of(u) always I l j = O  

arises as a common factor. The resulting expressions for the weights are 
presented, and from these we find that we have crossing symmetry 

C 

w q(a b 
= Eoe~e, e,, ~ xo~ c 

- u + ( p - q + l ) 2 )  (6.28) 

partial height reversal symmetry 

w P q (  d ~1 u )  

xq,. ( d 
.D____( -- l )PL,~a+dF, b+c--~.- W p . L - l - q  

X~ta L +  1 
c u + ( q +  1)2) 

- a  L + l - b  

(6.29) 
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full height reversal symmetry 

)__ W pq U 
b L + l - a  

and an initial condition 

L + l - c  ) 
L + l - b  u (6.30) 

(a ) W qq 0 =0q(0) ~ ~q ~q (6.31) Var b 

Properties (6.28) and (6.30) can be proved alternatively by applying the 
corresponding properties of the level-1 weights directly in (6.20). 

Using techniques similar to those used in ref. 17 to derive explicit for- 
mulas for the ABF fused face weights, it can be also shown that, for the 
boundary weights, the summations over multiple spins in (6.21) and (6.22) 
always reduce to a single term, with q-2 I-Ij=o O~f+~(2u-I ~) as a factor. This 
gives, for Aqb = 1, 

and 

b u) 
(a - -b+q) /2  

1-[ { 0(j2) O((a--j)2) O( - - u - - ( q - - j ) 2 - - (2 - -p ) /Z+ ~L(a ) )  
j = l  

• O(u + (q - j  + a)2 + (2 - p ) / 2  + ~L(a))/O(2) 4} 

(b - -a+q) /2  

• 1-I {O(j2) O( (a+J)2)O(u+(q- -J )2+(2- -P) /2+~L(a) )  
j = l  

x O(u + (q - - j - -  a)2 + (2 --p)/2 - -  ~ L ( a ) ) / O ( ~ . )  4 } (6.32) 

(a --b + q)/2 

= l-[ {O(- -u- - (q- - j )2- - (2- - l~) /2+~R(a) )  
j ~ l  

x O(u + (q - - j  + a)2 + (2 --lt)/2 + ~R(a))/O(j2) O((b + j)2)} 

[b--a + q)/2 

• l"[ {O(u+(q- -J )2+(2- -~ ) /2+~R(a) )  
j = l  

• O(u + (q - - j - -  a)2 + (2 --I.t)/2 -- ~R(a)/O(j2) O((b - j ) 2 ) }  (6.33) 
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It follows from these expressions that the ABF fused boundary weights 
satisfy partial height reversal symmetry 

OL_~_q(u+~-~-----~L(a))OL~_q(u+~--~-+~L(a))Bq (~ b u) 

= - - /  xqb "~ 0 q+l Id"[- ~L(a) ~,,1_1 /4 _ ~qq+l + - - - ~  + ~L(a) \OZL(o)j q-,-,, +,, 

XBLL-t-q( a L+ l - - b  u+(q+ l )2)  

OL~_q(u+~_p__r b :IU) (6.34) 

(~176 ( ~-" )oq+ = - ~ ~,,_~ u + ~ R ( a )  ~ 

xB~- ' -"(L+I-b a alu+(q+l)2) 

+ , ( u +  2 - p  )) --~--+ CR(a 

and, provided that (4.14) is satisfied, full height reversal symmetry 

B~( c u)=Bq( L+l-cL+l-a L+l-b  u) 

( c r )  ( - B~ b a u B~ L+l-b  L + l - a  

(6.35) 

6.3. Local Re la t ions  

We now consider the fused local relations (5.4)-(5.9). It is shown in 
ref. 17 that the ABF fused face weights satisfy the fused Yang-Baxter equa- 
tion (5.4). A proof proceeds as follows: if fusion level - 1  is involved, then 
each side of (5.4) is zero, if fusion level 0 is involved, then each side of (5.4) 
immediately reduces to a product of the same terms, and if higher fusion 
levels only are involved, then (5.4) can be verified by setting internal 
arbitrary spins equal to adjoining summed spins, using (6.23) to push all 
explicit occurrences of the fused adjacency condition to external edges, and 
applying the original Yang-Baxter equation (3.4) pqr times. 

It can also be shown that the ABF fused face weights satisfy the fused 
inversion relation (5.5) with 

pqr(u) = OLI(U) (6.36) 
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Again, if fusion level - 1  is involved, then each side of (5.5) is zero, if fusion 
level 0 is involved, then the left side of (5.5) immediately reduces to the 
same product of terms as the right side, and if higher fusion levels only are 
involved, then (5.5) can be verified by setting internal arbitrary spins equal 
to adjoining summed spins, using (6.23) to push all explicit occurrences of 
the fused adjacency condition to external edges, and applying the original 
inversion relation (3.5) qr times. 

Finally, in Appendix B we show that the ABF fused face and bound- 
ary weights, together with pqr given by (6.36), also satisfy the fused reflec- 
tion equations (5.6) and (5.7) and fused boundary crossing equations (5.8) 
and (5.9), where 2 is these equations is taken as the crossing parameter 
(4.3) and p is arbitrary. 

6.4. D o u b l e - R o w  Transfer Matr ices 

We now consider the ABF fused double-row transfer matrices DPq(u), 
which are defined by (5.3), with 2 given by (4.3), and the ABF fused 
double-row transfer matrices with fixed left and right boundary spins aL 
and aR, DPq(aLaR [ /,t), given by 

(a_, ..... aNI Dl~q(aLaR ] U) Ib2 ..... bN} 

= (aL,  a2 ..... aN, aR[ DPq(u) [aL, b, ..... bN, aR) (6.37) 

By reconfiguring the fused face weights in the top row according to (6.25), 
using (6.23) repeatedly to push all explicit entries of A r to the lower edges 
and all explicit entries of A q to a single internal edge, setting as many inter- 
nal arbitrary spins as possible equal to adjoining summed spins, and can- 
celing all of the gauge factors G which appear along the top row, we find 
that DPq(aLaR [U) can be written as 

P P 
A aLa2  - �9 " A aNaR 

( a ,  ..... aN[ DPq(aLaR [ U) ]b,_ ..... bN)  - Kpq(u) ~. AgL,. 
r 

a• . •  . . . . . . . . . . . . .  ab  e l t  

- - ~ - 0  ~'~ ~ . ~ .  . . . . . . .  

X (p-O-', 

[ / / , ~ - @ - ] 1 .  
ds . . . . . . . . . . .  ~i. 

b2 bN eNI a R  OR --~ ~ --~! . . . . . . . . . . . . . . .  
. . . . . . .  I}.\ 

~v2 aN  R 

(6.38) 
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where 

q--2 
KPq(u) = 1-[ (Of(u) O~j_ ]( - u  + p) )N O~f+ll(2U __p) 0~. ~_ l( - 2 u  +/~) (6.39) 

j=O 

and we must have 

P (eNl ..... eN.p-l)~Pt~^,,, R (ell ..... el.p_ l) ~ P ,,Lb,_ ..... 

and, for each c in the sum, 

(cl ..... Cq-l)~ PqL,. 

We note that the spins c~ ..... Cq_~ cannot be set equal to the adjoining 
summed spins, as they only become arbitrary after the summation has 
occurred. 

Since the required fused local relations are satisfied we have from 
(5.12) commutativity 

DPq(aLaR [ U) DP"(aLaR [ V) =Dpr(aLaR [ v) DPq(aLaR [ U) (6.40) 

and from (5.11) crossing symmetry 

DPq(aLaR [ U) = DPq(aL aR [ - - u - - ( q - - 1 ) 2 + p )  (6.41) 

It follows from (6.29) and (6.34) that the ABF fused double-row transfer 
matrices also satisfy partial height reversal symmetry 

~L2q(aLa R ] u) DPq(aLa R I u) 
p N  q +  I - -  1 = ( - l )  f lq_ l (aLaRlu)  D p'L - - V ( a L a R l u + ( q + l ) 2  ) (6.42) 

or, equivalently, 

flL--2q(aLaR I U) DPq(aLaR I U) 
=(__l )PN.q+l[ r l  , ' I  ~q--1~"L"Rlu) DP'L- - I - -q(aLaR[u+(q+I)2)  (6.43) 

where 

C%-(aLaR [ U) -- O k u + " + ~L(aL) 

x O ~ ( u + ~ - ~ - - - ~ R ( a R ) ) O r k ( u + ~ - ( - + ~ R ( a r ~ )  ) (6.44) 

and 
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fl~.(aLaRlU)=O~._, t U q - T - - ~ L ( a L )  0k+CtL U + " ~ + ~ L ( a L )  

) X02_.R U + ~  ~R(aR) 0k+,, R U+ +~R(aR) 

(6.45) 

Considering q = - 1, 0, L - 1, and 
(6.15) and (6.16), 

where 

Dr,, - I(aLa R 

DI"Z- (aLaR 

DP'O(OLOR 

D t , . L -  I(aLa R 

L in (6.42) or (6.43), we have, using 

where 

p 
f l ' . (u)  = (Off(u) 0_k_ i( - u  +lt))^' (6.50) 

and I P ( a L a R )  is the adjacency-inclusive identity 

( a2, a3 ..... aN-1, aN[ IP(aLaR) [b2, b3 ..... bN-1, bN) 

=6,,,I,...6,,b,.A~'L,,,Ar_ _ . , _ _ . . .  l' t' (6.51) ,,,_,,, A ,,,, _, ,,,v A CtNO R 

It follows from (6.30) and (6.35), with (4.14), that the ABF fused double- 
row transfer matrices satisfy full height reversal symmetry 

D t ' q ( a L a R I U ) = Y  D I ' q ( L + I - - a L ,  L + I - - a R I u )  Y (6.52) 

( a 2  ..... a,vl Y Ib2 ..... bN) =6L+L--.2.b,.'''SL+t--,,,,,,bN (6.53) 

For the ABF fused models, a natural choice for It in D P q ( a L a R  [ U) is 

It = p2 (6.54) 

u) = 0 (6.46) 

u) = 0 (6.47) 

u) = f ?  i(u) It'(aLaR) (6.48) 

o~L_2(aLaR I U) 
bl)=(--1)  pN L fp_2(U )|p(aLaR) 

fll 2(aLa R I tl) 

= ( - 1 )  p ^ ' f l z L - 2 ( a L a R  I I P ( a L a R )  (6.49) ~:(aLa~ lu~ ) f",_(u) 
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We note that p dependence, as opposed to q dependence, of /t in 
Dt'q(aLaR ] U) does not destroy commutativity or crossing symmetry. With 
this choice, crossing symmetry of the fused faced weights (6.28) implies that 
DZ'q(aLaR [ U) is similar to its transpose 

DPq(aLaRIU)=SP(aLaR) - l  Dm(aLaRIU)'SP(aLaR) (6.55) 

where 

(a2, a3 ..... aN--i, aNI SP(aeaR) Ib2, b3 ..... b,v- i ,  bN) 

0 ( 2 )  N - 1  
= d,,,b, "~ X :  X p X p X p 

- " ' "  VaNbN (fLU2 a2a3"'" . . . , N _ l a  N aN(., R 0(a22)... O(aN}~) (6.56) 

6.5. Func t iona l  Equat ions  

In Appendix C, we show that the ABF fused double-row transfer 
matrices satisfy functional equations whose structure reflects that of the 
fusion rule (6.7) satisfied by the adjacency matrices. There are two families 
of functional equations, 

g~ 

= 0el-I(aLaR I U) fl'_ l(aLaR I U) g,7 '(2U -- 2)fP_2(U) D ?'q- I(aLa R [ u + 2) 

+ g)/(2u -- 2) J'5 ,(u) D p'q+ '(aLaR [ U -- 2) (6.57) 

and 

g~ DPq(aLaR I U) Dm(aLaR l u+q2)  

=~,1-' t (aLaR l U)fl~/_~(aLaR [u)g, f ' (2u+q2)f ,~(u)DP'q-- l (aLaR l U) 

I p + gq(2U + q2) f~_ i(u) D p'q+ I(aLa R I U) (6.58) 

where 

= , ( . - . )  o:, (6.59) 

The importance of these equations is that they describe the essential con- 
tent of the fusion hierarchy, since we see that either family, together with 
DPO(aLaRI u) and DP~(aLaRlU), can be used to determine recursively the 
higher-fusion-level double-row transfer matrices. 

It can be shown, using induction as done in ref. 20 for the periodic- 
boundary case, that (6.46), (6.48), and either (6.57) or (6.58) imply that the 
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fused double-row transfer matrices also satisfy a generalized inversion iden- 
tity which corresponds to (6.8), 

O~_, (2u-p)  O~q+l(2U-/t) DPq(aLaR [U)DPq(aLaR [U+2) 

= 0 :  l(aLa R[u)flqq_l(aLaR[u) 

x 0~ l(2u --It) O~q+ 1(2u --p) fP_ j(u).f,'l(u) IP(aLaR) 

+ 01q(2g __]/)2 Dp, q -  l(at.aR [ u + 2) D p'q+ t(ata ~ [ u) (6.60) 

Finally, if we define 

dPq(at aR [ u) 

_ O)t(2u-It)'-D p'q- l (aLaRlu + 2)D p'q+ I (a taRlu)  
~q_,(aLaR l u)flq_,(aLaR [ u) Ol ,(2u--/z) ' 02q + l(2u --p) f P  ,(u) f,f(u) 

(6.61) 

then we obtain an identity which corresponds to (6.9), 

dPq( aL aR [ u) dPq(aL aR [ U + 2 ) = ( I : (  aL a R) + dP'q-  l(aL ag [ u + 2 ) ) 

x(IP(aLaR)+dP'q+l(aLaRlu)) (6.62) 

7. D I S C U S S I O N  

We have presented a general formalism for applying fixed boundary 
conditions to IRF models and have specialized to the case of ABF models 
and their fusion hierarchy. In future work, we intend both to continue our 
study of ABF models and to proceed with the application of fixed boundary 
conditions to other IRF models. 

With regard to the ABF models, we note that the functional equations 
(6.57) and (6.58) have the same structure as those satisfied by the ABF row 
transfer matrices with periodic boundary conditions. ~91 We therefore plan 
to use the same approach as in ref. 19 to obtain Bethe ansatz equations for 
the eigenspectra of the double-row transfer matrices. We also hope to 
calculate the boundary free energy of these models, and to use the techni- 
que of ref. 20 to calculate analytically the central charges and conformal 
weights. Other directions in which our treatment of ABF models could be 
developed further would be to investigate the existence of boundary 
weights of a nondiagonal form and to explore the connection between ABF 
boundary weights and known boundary weights for the related eight-vertex 
model. 
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With regard to other models, the ABF models correspond to the A 
series within the standard A-D-E models, and we plan to study the other 
members of this group. We also hope to consider the dilute A-D-E models. 
In these models the unfused adjacency matrices allow identical spins to be 
adjacent, which would enable us to consider the important case of fixed 
boundaries of the form a, a, a ..... whereas for the level-1 ABF models only 
the form a, a + 1, a .... is possible. 

APPENDIXA.  DERIVATION OF ABF BOUNDARY WEIGHTS 

In this appendix, we find boundary weights which, together with the 
ABF face weights (4.4), satisfy the reflection equations (3.6) and (3.7). We 
then show that these weights also satisfy the boundary crossing equations 
(3.8) and (3.9). 

We observe from the spectral parameter dependence of the reflection 
equations that it suffices to solve the equations for the case p = 2, since if 
we then replace u by u+(2-Ft)/2 in the resulting boundary weights, this 
gives a solution for the case of arbitrary Ft. Furthermore, we see from 
the spin dependence of the reflection equations that, since the ABF face 
weights satisfy the symmetry (4.8), the left and right equations are effec- 
tively the same, so that it suffices also to solve them together. 

We now assume that there are solutions which have the diagonal form 

The reflection equations, with It = 2, then become 

~ W  u - v  W f 2 - u - v  B(a, f lu)  B(a, dlv) 
f 

Cl =~W(d.  f [ u - v )  W( f  b 2--u--v) B(a, f lu)  B(a, blv) (A.2) 

The equation is trivially satisfied if AobAb,.A,.aAd,=O. Proceeding to 
A,bAbcA,.aAd,= 1, we see that if b=d=a+_ 1 and c=a or c=a+2, then 
both sides of (A.2) are automatically equal, since the ABF weights satisfy 
the symmetry (4.7). The only set of spin assignments remaining is b = a + 1, 
c=a, and d=a-T-1, where a = 2  ..... L - l ,  which gives L - 2  pairs of 
identical equations, 
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O((a + 1 )2)'~ ~/-~ 
O ( ( a - 1 ) 2 ) J  O ( u - v )  O ( u + v - a 2 ) B ( a , a - l [ u ) B ( a , a - l l v )  

- O(u + v) O(u - v -a2) B(a,  a - 1 [ u) B(a ,  a + I [ v) 

- O ( u  + v) O ( u - v  + a2) B(a, a + 1 [ u) B(a, a -  1 ] v) 

(O,,.- 
l ) 2 ) ) ' / Z O ( u - v )  O ( u + v + a 2 )  B ( a , a +  1 l u ) B ( a , a +  1 I v )=O 

+ \O((a + 1 )2)7 

(A.3) 

We note that the boundary weights B(1, 2 I u) and B(L,  L -  1 [ u) do not 
appear in any of these equations and can therefore be set to arbitrary 
functions g~(u) and gz(u).  Returning to a = 2  ..... L - I ,  we now assume 
that there are constants ~(a) for which B ( a , a - l l ~ ( a ) ) = O  but 
B(a, a +  1 [ ~(a)):/:0. Taking v = ~ ( a )  in (A.3), we find that solutions must 
have the form 

B(a, a -- 1 I u) = (O( (a -- 1 )2))1/20(u -- ~(a) ) O(u + a2 + ~(a) ) g,,(u) 

B(a. a + 1 I u) = (O( (a + 1 )2))i/20(u + ~(a) ) O(u - a2 -- ~(a) ) g,,(u) 
(A.4) 

for some functions go. 
We now verify that these are in fact solutions for arbitrary constants 

~(a) and arbitrary functions g,,. Substituting (A.4) into the left side of (A.3) 
gives 

(O((a + 1)2) O((a -- 1 )2))i/2 go(u) ga(v) 

x (Q,,(u, v ) -  Q,,(u. - v ) -  Q.( - u ,  v) + Q . ( - u ,  - v ) )  

where 

Qo(u, v) = O(u - v) O(u + v - a2) O(u - ~(a)) 

• O(u + a2 + ~(a)) O(v - ~(a)) O(v + a2 + ~(a)) 

Using the identity (4.6), we now find that 

Qo(u, v) - Qo(u, - v) = 0(a2) 0(2v) O(u - ~(a) ) 

x O(u + ~(a)) O(u - a2 - ~(a)) O(u + a2 + ~(a)) 
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which we can see is even in u, thus implying that the left side of (A.3) 
vanishes as required. The boundary weights (A.4) obtained here match 
those of (4.13) once we replace u by u+(2t-lt)/2, make appropriate 
choices for g,,, and set ~ ~-* ~L/R. 

Finally, we consider the boundary crossing equations (3.8) and (3.9) 
with the ABF face weights, the boundary weights found here, and p given 
by (4.12). These equations are satisfied since if 6,,,.A,, b =0,  then both sides 
of the equations are zero, if a = c = 1 or L and b = 2 or L -  1, then the left 
sides are single terms which we immediately find are equal to the terms on 
the right side, and if 2 ~< a = c ~< L - 1 and b = a +_ 1, then the left sides are 
sums of two terms which we find can be reduced to the terms on the right 
side using a single application of (4.6). 

APPENDIXB.  ABF FUSED REFLECTION AND 
BOUNDARY CROSSING EQUATIONS 

In this appendix, we show that the fused right reflection and boundary 
crossing equations (5.7) and (5.9) are satisfied by the ABF fused weights. 
The proofs for the fused left reflection and boundary crossing equations 
(5.6) and (5.8) are similar. 

We begin with (5.7). If q = - 1  or r = -  1, then, due to (6.15), each 
side of (5.7) is zero, and if q = 0  or r =  0, then, using (6.15) and (6.36), we 
find that each side of (5.7) reduces to a product of the same terms. 

We now proceed to the case q/> 1 and r >~ 1. Having substituted the 
ABF fused weights (6.20) and (6.22) and p given by (6.36) into (5.7), we 
then reconfigure the central fused face weights on each side according to 
(6.25) and the upper fused face weight on the right side according to (6.27), 
set internal arbitrary spins equal to adjoining summed spins, use (6.23) to 
push all explicit occurrences of the fused adjacency condition to external 
edges, cancel internal gauge factors G, and take external arbitrary spins to 
be the same on each side of the equation. After these steps, we find that the 
left side of (5.7) is given by 

Oa_l(u--v + (q--r)2) Oq_l(--u--v--(r - 1)2 +,u) 

l-[u-2 05(u_ v ) 0 } ( - u -  v -  ( q -  1)2 +/,)O~fl+'~(2u-lu) 1-I52_g O~f+'~(2v-it) j = O  

t •  A r ,d q 
tie �9 A rib ~ L bc  

q r 
G c, lq . . . . ,hq_ i , d G  d, i] ...., i r -  I , a  

f l  . - . f r -  I g l . . . g q - I  

822/84/ I -2-3  
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and that the right side of (5.7) is given by 

Orl(u--v) OLl(--U--O--(q-- 1)2+It) 

r - 2  

x {j =[-Io O].(u--v + (q--r)2)0].(--u--v--(r--l)2 + It)0~7+1,(2v --#) 

q--2 t - - I  
• FI 

j = O  

r q J ,eA ,,b A be 
q r 

Go,& ....,hq-~,d G d, it ,...,i,_ t , a  

X ~ ~ d~.qr(u,V)a,bc, d,a, fl,...fr_l gl,..,.gq_l,hl.....hq_l,il,...,ir_ I 
f l  . . . f r -  I gl...gq-I 

where we must have (hi,..., hq_l)~Pqd and (il,..., i,'-I)eP,rl,, and where 

zpqr(u, V),,,b,~.d.~.f~,...J,_~,g,,....~ 

a r 
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/3 

~ 'qr (  u ,  [ ) a  b c,d,e f l  ... f r - l , g l , . . - ,  J 

We now claim that, for any model in which the original Yang-Baxter equa- 
tion (3.4) and right reflection equation (3.7) are satisfied and for arbitrary 
2, we in fact have 

. ~ q r (  1,1, U)a" b, c,d,e, f l  ,...,fr- I, gl ,..., gq-  t,hl ,...,hq- I, il ,,., i t - I  

: ~ q r ( u  , U)a,b,c,d,e, fl , . . . , fr_l,gl, . . . ,gq_l.hl, . . . ,hq_l,il , . . . , ir_ 1 

This can be p~'oved by induction, which consists in showing that 

(B.I) 

~l.~(u,v)=~.l(u,v) 

that 

~1"I(U,V)=~I'I(U,V) and , ~ q - - l ' l ( U , V ) = ~ , q - - l ' l ( u , v )  

implythat ~q'l(u, v) = ~q'l(u, v) 
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and, finally, that 

~ q ' l ( u , v ) = ~ q ' l ( u , v )  and ~q'"- I (u ,v)=.~ .q ' r - I (u ,v)  

imply that s v) = Nq'"(u, v) 

We know the first statement holds, since it is simply the original right 
reflection equation (3.7). We shall only explicitly demonstrate the second 
statement, since the third can be demonstrated similarly. We have, for 
q>~2, 

L- ~ l(u, v) = , ~ / ~ - ~ : " ~ ? : ,  

/ ~ \ /  ~ , - 2 . \ /  I 

(using the Yang-Baxter 
equation q - 1 times) 
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?, 

iiiii.~ 

( applying 
~l,'(u, v)=.~.',l(u, v)) 

,,< 

(applying 
~q-"'(u,  v) 
= ~ q - -  I ' l ( u ,  /))) 



38 Behrend e t  al. 

~ i  
'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'~1): ~ 

(using the Yang-Baxter 
equation q - 1 times) 

= ~"" l(u, v) 

Having established (B.1), it is straightforward to verify that the u, v- 

dependent factors on each side of (5.7) are equal, which completes our 
proof that (5.7) is satisfied. 

The proof that the fused right boundary crossing equation (5.9) is also 
satisfied by the ABF weights corresponds closely to that for the fused right 
reflection equation. If q-- - 1 ,  then each side of (5.9) is zero, and if q =0, 
then each side of (5.9) is given by (~ab~bc. For q~> 1, we reconfigure the 
fused face weight on the left side of (5.9) according to (6.26), set internal 
arbitrary spins equal to adjoining summed spins, use (6.23) to push explicit 
occurrences of the fused adjacency condition to external edges, cancel inter- 
nal gauge factors G, and take the external arbitrary spins to be the same 
on each side of the equation. After these steps, we find that each side of 
(5.7) is proportional to a sum of products of levei-I face and boundary 
weights, and that the proof can be completed by using induction on q to 
show that face and boundary weight components of each side are propor- 
tional, and then verifying that the overall proportionality factors on each 
side are the same. The induction argument here is valid for any model in 
which the original inversion relation (3.5) and right boundary crossing 
equation (3.9) are satisfied. 
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A P P E N D I X C .  PROOF O F A B F  FUNCTIONAL EQUATIONS 

In this appendix we prove that the ABF fused double-row transfer 
matrices satisfy the functional equations (6.58). The proof of (6.57) is 
similar. 

We note that for q = 0 ,  (6.58) is immediately satisfied due to (6.46) 
and (6.48). We therefore proceed to the case q >~ 1 and begin by considering 
an entry of DPq(aLaRlU)DP](aLaRI u + q2). Using (6.38), we find that 

( a2 ..... aNI DPq(aL aR I u) DPl(aL aR I u + q ) . )  Ib2 .... b+v> 

A p , .  p oLa2 " A a N a R  
- K P + ( u )  Y'+ A~L'. x 

s 

aL.. .a~. . , ,~_l ,  l~.p-m 

. . . . . . . . . . . .  ~ (~P~-') .' "+q.' 

(~,~-2).~ (~-~)x -,+-(+--,)~ >..: 

=L 

. . . . . . . . . . . .  (q+p-a),~ 

(q-F-l) 

u-(p-ib~ 

. . . . . . . . . . . . .  aL 

--u+#- 

(+-2)x 

.+{+-2): 

u 

a 2  

~w IN, I~.,,-~ . . . . .  o .  

~ - i ) :  

. . . . . . . . . . . . . . . .  o l t  
+ 

. . . . . . . . .  t) ', 

+ I :++P~): (+-2i~ o 

(,~-t)+x -'+% 

++(+,+' l 

a~r i i  

( C . 1 )  

where we must have (c~ ..... Cq_])~Pq,,+ for each c in the sum, and 
p PbNoR" We now use the identity (ftl ..... f l , p - ~ ) ~ P , , L b ,  ..... ( f N t  ..... fN ,  p - - t ) E  P 

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  d 

4! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ] 

0,  2 . . . . . . . . . . . . . . . . . . . . . . .  C2 

a3 C3 

x(~.,~, 6.q.qAa., "A"~b (C.2) 
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which can be obtained by using the inversion relation q times. By inserting 
(C.2) just below the top row of faces in (C.I), and then using the 
Yang-Baxter equation qpN times, we find that 

( - 1 )q 0qq_ 2(2u - p )  Oqq(2U - p )  

x (a2 ..... aNI DPq(aLaRIU)DPI(aLaRIu +q2)Ib2 ..... bN) 

1 ~ . q ~  c ) . ,  
- - K P q ( u )  A O L C O . ~ ( a L ,  C I . . . . .  C q _ 2 ,  C q _  I ,  C, d, 

�9 , ,.Cq-lJE ~L. 

where we define 

(C.3) 

~(aL, Ct ..... Cq_ 2, Cq_ l, C, d.~ e) 

- -  P P X 
- -  i aLa2 �9 " " A aNaR 

eL aL 111 

. . . . . . . . . . . . . . .  2 

I /'~%?"/~-' I ,,+ 

~ Im art 

h-llA (r (r 

" - ~  ] (m-Ox 
L 

u +  

~ r  ,+(q-~P ' ,~q-O.~ 

u+  

a2 aN 

aR 

. . . . . . . . . . . . . . . . . .  u4q~  

. . . . . . . . . . . . . .  a R ...... ~ l l X  
\ \/~"rt 

a l l  . . . . . . . . . . . . . . . . . . . . . .  aR 

(C.4) 

We note that the dependence of ~ on p, q, u, and all of the external spins 
except a L has been suppressed. The next step in the proof of (6.58) will be 
to decompose the sum over c in (C.3) into antisymmetric and symmetric 
sums. However, in order to do so we shall need several subsidiary results. 
We begin with the following local identities: 

d a 

Zgbee,. ~: 
b a 

O(a2) 0 ( 2 -  u) 0(2 + u._) JbdAobAb ~ 
e"e"--O(b2 ) 0(2) 2 

(C5a)  
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a d 

_ 0(c2) ~ o  O(d,I) O(d2) O(2-u) 0(2+ u) 
e,,e,,O~a2): eae<, ~ e 2 )  - -  0 ( a 2 )  0 ( / l )  2 

a 

(~&l AubAbe 

(C.5b) 

y~ ~ ~+~ O(aX)O(a- . )o (x+u)  
,- b a - O(d2) 0(2) 2 6baA"~176 

erie e (C.5c) 

. O(a,l) 
I N  ~a~e 

~ o  O(e2) _ ('O(a2)'~-' O(2u + 32 - / x )  

3-'. �9 - \ O/,~) ) o(),) yl~(a I u) A<,<. 
c 

~I' ~ e,e,. (C.5d) 
a 

O(c).) ~ / , f  

e<,e,. O ( a ) t ) ~ .  _ ( ,  0(2) ~'- O(2u + 3 2 - t t ) ) ' R (  a [U)A,,,  

- 2 0 ( a , t ) )  0(,~) 
e,,e~ r ",,,~ (C.5e) 

where 

YL/R(a I U) 

= O(u + (2 - I t  )/2 - ~L/R(a)) 0(U -b (,~ -- l l  )/2 -t- ~L/R(a) ) 

x O(u -- a2 + (2 - p ) / 2  - ~L/R(a)) O(U + a2 + (2 --p)/2 + ~LIR(a))/O(2) 4 
(C.6) 

Identities (C.5a)-(C.5c)  can each be proved as follows: if the external spins 
do not  satisfy the adjacency conditions, then both  sides of the equat ion are 
zero; if b = d = a + 1 and e = a + 2, or else a = I or  L, then the left side is 
a single term, which we immediately find is equal to the term on the right 
side; if b=a+__ l, d = a ~  1, and e = a ,  then the left side is a sum of  two 
terms, which immediately cancel, as required by the delta function on the 
right; finally, if 2 ~< a ~< L -  1, b = d =  a +__ 1, and e = a, then the left side is 
a sum of  two terms which can be reduced to the term on the right side 
using a single applicat ion of  (4.6). 
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The proofs  of  (C.5d) and (C.5e) are similar: if a and e do not  satisfy 
the adjacency condition,  then both  sides of  the equat ion are zero; if a = 1 
or  L, then the left side is a single term; and if 2 ~< a ~< L - 1 and e = a + 1, 
then the left side is a sum of  two terms which can be reduced to the te rm 
on the right side using (4.6). 

We now use these identities repeatedly in (C.4). By star t ing at c and 
proceeding in a clockwise loop, using (C.5a) q - 1  times, (C.5d) once, 
(C.5b) p N  times, (C.5e) once, (C.5c) q -  1 times, and (C.5a) p N  times, we 
find that,  for q ~> 2, 

~ ~ e ,~(aL,  c, ,.., c,,_~_, ,4, c, ,4, e) 
r 

= Aa~MVq(aLaR [ u) x 

aL aL / j ,  

- u "  t 

- ' ~  Nz  

a . . . . . . . . . . . . .  a l .  a~ 

~+ 

~-(p- l )x  

ate 

~rt aR 

(q.-2),~ 

a 

a t l  

u 

al~ . . . . . . . . . . . .  ni t  

(C.7a) 

while, for q = 1, 

'~e E 8,'G~@(aL' C, aL, e) 
c 

=A,L, ,MPI(aLaRIu)(a2 ..... aN] IP(aLaR)]b2,. . . ,  bN) (C.7b) 

where 

MPq(aLaR l U) 

= oq~ 1(2U + (2q -- 3)2 - - l t )  0 q-  1(2U + (2q -- 3)2  - - I t )  

X 001( - -2U--  (2q - -  3)2 +It) ~'L(aL I --U -- q2 +It) 

X (OP_~(--u--q2+/t) Of( - -U- -  q2 +/~))  N 
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x O~(2u + (2q + 1)2--it) ))R(aR I U a t- ( q  - -  1 ) ~ )  

x oq~ 1( - 2 u  - q)~ +It) 0 q- t( - 2 u  - q2 +It) 

x (OPz(u + ( q -  1)2) OP(u + (q-- 1)2))N (C.8) 

We now assert the following properties of 9:  

AqL,,~(aL, Cl ..... Cq-z, Cq_ t, C, d, e) 

= AqLeAqL,.~(a L, c I ..... Cq_ 2, Cq_ l, c, d, e) 

for (cl ..... C q - - l ) ~ e q L c  (C.9a) 

AqL,,~(aL, el ..... Cq_ 2, Cq_ t, c, d, e) 

is independent of (e I ..... Cq _ ~ ) ~ Pq,,. (C.9b) 

~" E 8c 1~(aL' C'l ..... C;_2, d, c, d, e) 
r 

is independent ofe for Aa,, = 1 (C.9c) 

Aq- '~  ~ 'ec~(a  L, c', C'q_2, d, c, d, e) aLd "e ~'"~ 
c 

is independent of (c' I ..... C'q _ ,_) ~ P q J  (C.9d) 

Aq+ 1 " " c" " d, e) ,n.a ~ ( a L ,  Cl ..... Cq--2' q - - I 'Cq  ' 
e 

is independent of(c]' ..... Cq)" E P,,,aq+ l (C.9e) 

q Properties (C.9a) and (C.9b) follow by considering A,,L,.~(aL, Cl ..... Cq--2, 
Cq_l, c,d, e), with (cl ..... Cq_t)~ q P,~,., as a linear combination of terms of 
the form 

( e  g 2 1 )  wpq(glv glv+.l ) ( aR[ ) W pq u "'" U B ~  g N + l  U 
a L (l 2 a N aR OR 

x Wlq(iN+l\hN+l gN+IaR I - 2 u - ( 2 q - 1 ) 2 + I t )  

X W pq ( iN 
hN 

' ' '  w P q l d  

X W ql ( it 
aL 

IN+l  
hN+l - -u-- (q--1))~+it  

i, + It) h21 - u - ( q -  1)2 

d l 2 u + ( 2 q - 1 ) 2 - i t ) B q ( a L c  L \aL e I u 
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Property (C.9c) follows immediately from (C.7a) and (C.7b), while property 
(C.9d) follows from (C.7a) by considering A~l,~le,.Z,.e,.~(aL, c'l ..... Cq_2, 

,' q - - I  d, c, d, e), with Aae= 1 and (c'~ ..... Cq_2) e P , , a  , as proportional to a sum of 
terms of the form 

wp.q_l(glaL g2la,_ u ) . . . w P ' q - I (  gNaN gN+~J U Bq-  ] (g^'+ ] agaR] )u 

• w P ' q - I  ( bNgN gN+ aR I I - u - ( q - 2 ) 2  + p )  

�9 "" w P ' q - I (  aL b '  ) - - u - ( q - 2 ) ) , + p  
\ g i  g2 

X~I(OL] ) 
gt - - u - -  ( q - -  2 )2  + p  

aL 

Finally, property (C.9e) follows by considering Aq+~ . . . . .  " ' . t d  ~'~'," ~ ( a L '  CI ..... Cq--2' 
tr tt tt ~ n q  + ] C"q_ l , C q , d~ e ), with ( c ~ ..... C q ) E r ,L a , as a sum of terms of the form 

~q~' (g'oL g2[)o2 u w,,q~, (gNaN gN~'I~R U) R"~I (_R ~N~, oRO~I)U 
~+,(~ g~+a", I~+~)~q+,(a~,g, g2~:l -~-q~+'') 
x u  L aL g~ - - u - - q A + p  

Table  I. 

d - a 6  
{ - q - l , - q + l ,  - q + 3 ,  
.... q - 3 ,  q - l , q + l }  d - a =  - q - 1  d - a = q +  l 

d = l  2<-..d<..L-I d = L  d = l  2<...d<...L-I 2<~d<~L-I d = L  

A q d _ l  

A ~ . , j +  i 
A~.31 

q+] A.,a 

- -  0 0 - -  0 1 1 

0 0 - -  1 I 0 - -  
0 0 0 0 0 0 0 
0 0 0 I 1 1 1 
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We now return to the sum over c in (C.3), which we claim can be decom- 
posed into antisymmetric and symmetric sums, 

q ~ A,,L,.~(aL, Cl ..... C,,_2, Cq_ I , C,  d, c) 
c 

t = A ~1,-~/l e, ~ ec~(aL,  C'l ..... % _  ,, d, c, d, e) 
L " 

c 

" c" c . . . .  d, e) (C.10) + E c, ..... q_ , ,  , ,_ , ,  cq, 
e 

In this decomposition we assume the following: that (c~ ..... Cq_ 1)~ p ~ l  for 
each c in the sum of the left side; that e satisfies Aa,,= 1 and that 

C ~ . e q -  1 # ir p q  + i in (C'l ..... q_ , j  c , ,a  in the antisymmetric sum; and that (c~ ..... cq ) e - ,~a  
the symmetric sum. Therefore, due to (C.gb)-(C.ge), all of these spins are 
arbitrary. 

We now proceed to prove (C.10). We begin by constructing a table 
[Table I ]  of values in of the adjacency matrix entries which appear  in 
(C.10) (as well as in the fusion rule (6.7)). The entries in the table can all be 
obtained directly from the fused adjacency conditions (6.1) and (6.2). We 
now denote the left side of (C.10) by 2 '  and the right side of (C.10) by ~ ,  
and consider cases corresponding to those listed in the table. 

(I) d - - a L q ~ { - - q - - 1 , - - q + l  ..... q - - l , q + l } ,  d + a t  < , q - l ,  or 
d + a L > ~ 2 L - q + 3 .  

In these cases, 2" and N are each zero. 

(II) d - a t = + _ ( q + l ) .  

In these cases, 2" and N are each given by the single term 

2 " = ~ - - ~ t a - -  t L, a L + l  ..... aL+---q, a L + ( q + l ) , a L + q )  

(III)  d - - a L ~ { - - q + l  ..... q - - l } .  

Values of Adjacency Matrix Entries in (6.7) and (C.10) 

d - a e { - q +  lo - q +  3 , . . . , q -3 ,  q - l }  

q + 3 6 d + a  
d + a ~ q - I  " d + a = q + l  6 2 L - - q - - 1  d + a = 2 L - q + l  d + a ~ 2 L - q + 3  

d = l  2<~d<~L- I  d = l  2<~d<~L- I  2<~d<~L- I  2<~d<~L- I  d = L  2<~d<~L--I d = L  

- -  0 - -  0 1 1 1 0 0 

0 0 1 1 1 0 - -  0 - -  
0 0 1 1 1 1 1 0 0 
0 0 0 0 1 0 0 0 0 
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In these cases, we can satisfy (c, ,..., Cq_ 1)  ~ Pq,c, for each c in the sum in A a, 
by taking Cq_l = d  and (c, ..... Cq-2) ~pq-l=a,.d. We use this choice in each of 
the following subcases: 

(i) d + a t = q +  1. In this case, A a is comprised of the single term 

A a = ~ ( a L ,  cl ..... cq_2, d, d +  1, d, d +  1) 

Meanwhile, ~ is comprised of the antisymmetric sum only, for which we 
choose e -- d + 1. If d = 1, we have a single term, which immediately matches 
5f. For d >/2, we have 

= ~(aL ,  C'l , . . . ,  Ctq--2, d, d +  1, d, d +  1 ) - ~ (aL ,  C t, , . . . ,  Cq_ 2, d, d -  1, d, d+ 1 ) 

but, by taking c = d -  1 and e = d +  1 in (C.9a), we find that the second of 
these terms vanishes and therefore we again have a single term which 
matches A a. 

(ii) d + a e = 2 L - q +  1. This case is similar to the previous one, with 
.W now comprised of the single term 

= . . ~ ( a L ,  C l . . . . .  Cq_2, d, d -  1, d, d -  1 ) 

Again, ~ is comprised of the antisymmetric sum only, for which we now 
choose e = d -  1. If d =  L, we immediately have a term which matches s 
while for d ~< L -  l, we have 

~ = ~(aL,  C', ..... C'q_2, d, d -  1, d, d -  1 ) - - ~ ( a L ,  C', ..... C'q_ 2, d, d +  1, d, d -  1) 

but, as before, we find that the second of these terms vanishes by taking 
c = d +  1 and e = d -  1 in (C.9a). 

(iii) q + 3 < ~ d + a t < ~ 2 L - q - l .  In this case, w e h a v e  

Aa = @(aL, el ..... Cq_2, d, d -  1, d, d -  1) 

-[- G , , ~ ( a L ,  C ,  . . . . .  Cq_2, d, d +  1, d, d +  1) 

For .~, we choose in the antisymmetric sum e = d + 1, and in the symmetric 
t# u u C#t ~ q -  1 sum Cq =d~-  1, c,1_ l =d ,  and (c i . . . . .  q_2s~PaLd , giving 

. ~ = ~ ( a L ,  c', ..... c' d , d +  1, d, d +  1) q - - 2 ,  - -  - -  

-- ~ (aL ,  C'l ..... Cq_2, d, d-T- 1, d, d +  1) 

" c" d , d - T - l , d , d + l )  + ~(aL ,  Cl ..... ,/-2, 

" C" d,d-T-l ,d ,  dT-1)  + ~(aL ,  Cl ..... q-2, 



IRF Models with Fixed Boundary Conditions 47 

We see that the two middle terms of ~ cancel, while the two outer terms 
match those of ~ .  This completes our proof of (C.10). 

We now substitute (C.10) and (C.7a) or (C.7b) into (C.3), and use 
(C.4), (6.38), and (6.39) to give 

( -- 1 )q Oqq_2(2U --~l) Oqq(2U --,ll) 

x (a2 ..... awl DPq(aLa R ] u) DPI(aLaR ] u + q 2 )  [b2 ..... bu)  

MPq(aLaR I u) 
D 

(o~_2(u) O, q+ , ( - / /  + ~))N Oqq2 ~(2u-/~) 0% '+,(-2u + /~) 

x (a>... ,  aNI DP'q--~(aLaR l U) Ib2 ..... bu)  

+ (0;_ I(U) OPq( --lg ~-/l)) N Oqq_ 1(2// --[l) Oqq( --2U +tz) 

x (a2 ..... auIDV'q+I(aLaR I U) ]b 2 ..... bN)  (C.11) 

By using (C.8) and then canceling the common factor ( - 1  )q oq,;-12(2u-Iz) 
oq,79~(2u-I t)  from each side of(C. 11 ), it is straightforward to show that the 
coefficients of each term in (C.11) match those in (6.58), which completes 
our proof of (6.58). 
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